澳门太阳神集团

English Version

热点链接

新闻在线
  图书馆
网上办公
教务系统
书记校长信箱

von Neumann entropy, sandwiched Renyi relative entropy and related preservers

主 讲 人 :齐霄霏    教授

活动时间:11月25日15时00分    

地      点 :数学科学院D-203室

讲座内容:

Thevon Neumann entropy and therelative entropyare powerful tools and play important roles in quantum information theory.Assume that H is an infinite dimensional complex Hilbert space. Denote by T(H)+the cone of positive trace-class operators on H and S(H) the set of all quantumstates on H. In this talk, we first give a necessary and sufficient conditionfor two quantum states being equal by von Neumann entropy and Tsallisp-entropy, and then the maps on S(H) preserving the von Neumann entropy andTsallis p-entropy of a convex combination are characterized. On the other hand,we give the definition of sandwiched Renyi relative entropy for on T(H)+and then characterize all surjective maps preserving the sandwiched Renyirelative entropy on T(H)+. Particularly, the definition ofsandwiched Renyi relative entropy on S(H) is given and all surjective mapspreserving sandwiched Renyi relative entropy on S(H) are necessarilyimplemented by either a unitary or an anti-unitary operator.

主讲人介绍:

齐霄霏,理学博士,山西大学数学科学学院教授,博士生导师。长期以来从事算子理论与算子代数上各类映射的结构性质,以及量子信息科学中量子关联、纠缠刻画等问题的应用研究。目前为止,已出版学术专著1部,在《Journal ofFunctional Analysis》、《Science in China:Mathematics》、《PhysicalReview A》、《Science in China:Physics, Mechanics&Astronomy》、《ChineseScience Bulletin》等知名学术刊物上发表论文90余篇。主持或完成国家自然科学基金项目3项、山西省优秀青年基金项目1项、其它省级项目2项,获山西省科学技术奖自然科学类二等奖1项。


发布时间:2020-11-23 09:00:01

澳门太阳神集团-最新官网 澳门太阳神集团    冀ICP备18011017号-3  

冀公网安备 13010802000630号


地址:河北省石家庄市南二环东路20号 邮编:050024 
XML 地图 | Sitemap 地图